The Coq proof assistant: principles, examples and main
applications

Pierre Castéran, University of Bordeaux

NII, Shonan Meetings 100th Commemorative Symposium,
Tokyo, June 22, 2018

The first Shonan School
on Coq, co-organized with
Jacques Garrigue (University
of Nagoya, Japan) and David
Nowak (CNRS and Lille 1
University, France) August
25-29, 2014.

N
Plan of the talk

0 The need for computer-aided theorem proving
© Proof Assistants

© Should we trust a program proved with Coq?
@ The daily use of Coq

© Who is working on Coq?

© Learning Coq

@ Conclusion

26

The need for computer-aided theorem proving Computer Science

The need for computer-aided theorem proving

Computer Science

Critical software is everywhere: transportation, health, cryptography,
etc.

Programming languages require safe compilers and static analysers.
Tests and model checking cannot solve all the correctness issues
(mainly because of potentially infinite number of parameters and
data)

Due to classical indecidability results, we know that no fully

automatic method can guarantee the correctness of any program.
Thus, many proofs of correctness require man/machine interaction.

The need for computer-aided theorem proving Computer Science

Examples of applications

@ Correctness of functional programs

e Proof that a given function meets its specification.

e Program extraction from a (constructive) proof of realizability.
@ Study of programming languages semantics:

o Compiler certification (CompCert).

e Static analysis of C programs (Verasco)

e Proof of correctness of C and/or Java annotated programs, with
Why3, Frama-C, Krakatoa.
Validation of program transformation and composition schemes.
Impossibility proofs (many examples in distributed algorithmics).

26

http://compcert.inria.fr
http://compcert.inria.fr/verasco/

The need for computer-aided theorem proving Mathematics

Mathematics

@ Some recent theorems, like the Four colors theorem, the Kepler
conjecture, the Feit-Thompson theorem, require huge proofs,
containing very large case analyses and long computations.

@ For instance, the proof of the four color theorem requires the study of
633 “configurations” (potential counter-examples). Writing and
reading such demonstrations is impossible to a human being.

@ Some proofs contain very abstract and counter-intuitive parts. Their
representation inside a computer memory allows us to explore every
part of the proof, and get a better understanding than a paper proof.

@ For instance, a development on the Hydra game uses combinatorial
properties of ordinal numbers and complex induction schemes.

Proof Assistants

Proof Assistants

A Proof assistant is a software that combines two functionalities:
o Verifying that a given proof is complete and respects the rules of logic.

@ Helping the user to build long and complex proofs.

Examples

Let us cite LCF, Coq, Isabelle, HOL, PVS, ACL2, etc.

They differ from each other according to the logic they implement, e.g.
classical or intuitionistic, the extent of their standard library, their ability
to derive executable programs from proofs, how they guarantee the user
against logical errors, etc.

From now on, we focus on specific properties of the Coq proof assistant.)

Proof Assistants

Tactics and proof scripts

Proofs may be very long, thus the user does not have to type them in full
detail, but writes proof scripts, the execution of which builds tentative
proofs terms that are subsequently checked for correctness.

@ A script is composed of tactics like perform an induction, a proof by

cases, apply a given theorem, etc. The user can also program
his/her own tactics (in Coq or OCaml).

@ Search tools help the user to find which already proven theorem can
be applied in a given situation.

Example

See revrev.v

/26

revrev.v

Should we trust a program proved with Coq?

Should we trust a theorem or program proved with Coq?

ACM Software System Award (2013)

Because it can be used to state mathematical theorems and
software specifications alike, Coq is a key enabling technology for
certified software. The system is open source, is supported by a
substantial and useful library as well as full documentation, and
has attracted a large and active user community.

Before trusting any “proved with Coq" software or theorem, we must take
Coq's structure into consideration.

26

Should we trust a program proved with Coq?

The Calculus of Constructions was defined in Thierry Coquand’s PhD
thesis (1985), and was enriched by Christine Paulin-Mohring in 1990,
becoming the Calculus of Inductive Constructions (CIC).

The CIC is a typed lambda-calculus powerful enough to represent the
usual types of programming languages, program specifications, as well as
mathematical statements and proofs.

On top of the so-called Barendregt cube, the CIC allows to write
polymorphic, higher-order and dependently typed? functions.

?For instance, a function that is guaranteed to return a prime number, a
sorted list, etc.

10/26

Should we trust a program proved with Coq?

Some types of the CIC
@ The type of lists of elements of type A :

Inductive list {A: Typel} : Type :=
| nil
| cons (a:A)(1:1list A).

@ The type of prime numbers:
{n : nat | 1 < n /\
Vpq:nat, p*xq=n->p=n\/q

@ The type of the polymorphic function List.app
V A: Type, list A -> list A -> list A.

@ A logical rule:
YV (A: Type) (P:A -> Prop), ~(3 x:A, P
V x:A, ~(P

n}.

(append)

x) ->
x) .

Should we trust a program proved with Coq?

Example : a polymorphic function

Function app {A:Type}(1 1': list A): 1list A :=
match 1 with

| nil => 1"
| hd :: t1 => hd :: (app t1 1')
end.

A proof term (automatically built by Coq) of a derived logical rule:
Check

fun (A : Type) (P : A -> Prop)
(H: not (3 x : A, Px))

(x : A) (HO : P x) =>
H (ex_intro (fun x0 : A => P x0) x HO).
V (A : Type) (P : A -> Prop),

~(3x:4, Px) >V x: A4 ~(P x)

12

Should we trust a program proved with Coq? Critical and non-critical components

Main components of Coq

o The critical kernel, a type-checker for the Calculus of Inductive
Constructions. A theorem is accepted only if its statement is the type
of its proof term.

@ A programmable tactic engine, which helps the user to build
semi-automatically proofs of statements (mathematical theorems and
program proofs) (not critical)

@ A standard library containing definitions, theorems and tactics about
mathematical structures and data types. (built during Coq's
compilation, hence to be trusted)

Consequence

To trust a development in Coq, one just has to check the adequacy of the
definitions (specifications and programs), not looking at the details of the
proofs. The Coq development team, as well as expert users, constantly
watch the consistency of the CIC, as well as its translation into the kernel
wtriten in OCaml.

Should we trust a program proved with Coq? Critical and non-critical components

Directly or indirectly, the user of the Coq proof assistant accepts the
theoretical studies initiated by Thierry Coquand et al., and the open
source implementation of this theory (in the functional programming
language OCaml).

Some typing rules may look quite abstract at first reading. Let us quote
two examples:

E[M)Ft:¥x:U, T E[Fu:U

EIF (tu): T{x/u} App

ET|FU:s E)Ft:T EIF T <gsin U

E]Ft:U Conv

v

Fortunately, these rules are not to be learned by heart. Many examples are

shown in books, tutorials, and the standard library.
14 /26

Should we trust a program proved with Coq? Critical and non-critical components

Let us consider a huge formal proof in Coq of a given theorem. To accept
this proof, we do not have to read it in detail. It suffices to trust the
software's critical kernel in charge of verifying all the details of the proof.

The implementation of tactics may be bugged, in which case the theorems
would be more difficult to prove. But please keep in mind that the major
risk would be to accept as true a false statement.

Remark

Other proof assistants : Isabelle, HOL, Agda, etc. offer the same level of
safety, possibly with other means.

15/26

Should we trust a program proved with Coq? Critical and non-critical components

To make a development in Coq trustable, one should respect the following
advice.

@ Avoid the use of axioms, which can be the source of inconsistencies.
Coq's documentation lists which [sets of]| well-studied axioms can be
safely added to Coq's logic.

@ Make your definitions understandable by other people. For instance a
specialist in graph theory should accept that the work by Georges
Gonthier and Benjamin Werner truly proves the 4 color theorem.

16 /26

The daily use of Coq

Correctness proofs of functional programs

e Define in Gallina (the specification language of Coq) some functions
(terminating and side-effect free).

@ Prove some companion lemmas (important properties of the
functions).

@ Infer from those lemmas that the functions meet a given
specification .

Examples
@ List reversing is involutive: revrev.v

@ A correctness proof of (purely functional) insertion sort: sort.v

17 /26

revrev.v
sort.v

The daily use of Coq

Correct program synthesis

e We start from some specification, often expressed as an input/output
relationship.

@ For instance, “the list /' is a sorted permutation of /"

o Give a (constructive) proof that for any list /, there exists some list //
such that the relation holds.

@ By extraction, transform this proof into a functional program that
may be compiled and executed.

Remark

This technique is used to obtain the CompCert certified C
compiler [Com].

18 /26

The daily use of Coq

Proving imperative programs

Software of the Why3 family: Frama-C, Krakatoa take as inputs an
annotated program written in C, Java, .. The annotations specify pre- and
post-conditions, loop invariants and variants.

/*@ requires n >= 0 &9 \valid_range(t,0,n-1);
@ assumes Sorted(0,n-1,t); */
int binary_search(int *t, int n, int v) {
int 1=0, u = n-1;
/%@ loop invariant
@ 0 <=1 &9 u <= n—-1 &4
@ forall integer k; 0 <= k < n &4 t[k]=v ==>
6] 1 <=k <=u; */
while (1<= u) {
intm=1+ (u-1) / 2;

}
}

19/26

The daily use of Coq

@ Some implicit annotations control safety properties (invalid memory
access for instance).

@ Why3 associates to every annotation a purely logical theorem
statement called verification condition that ensures its validity in
every execution of the program.

@ Each verification condition is solved, either automatically or
interactively, depending on its difficulty.

Please note that Coq is used at two levels:

@ To solve the most complex verification conditions (the automatic
provers fail to solve).

@ At the meta-level, for proving the correctness of the generator of
verification conditions from the annotated program. /f every condition
is valid, then all the annotations will be satisfied in every execution of
the program.

Who is working on Coq?

Who is working on Coq?

@ The Coq development team, which maintains and document the
software.

@ Researchers in type theory and fundations of mathematics.

@ Contributors to proof pearls, libraries, and plugins.

Who is using Coq?
@ People who need a formal proof that cannot be built by a automatic
theorem prover.

@ Researchers who want to guarantee the correctness of a new
algorithm or a complex theorem.

@ Referees who have to check whether some submitted proof is correct.

@ etc.

21/26

https://coq.inria.fr

Learning Coq

@ Coq is a quite complete, hence big, software. Its reference manual is
more than 500 pages long [Coq].

@ Happily, in a few days, one is able to write simple proofs of small
recursive functions.

@ In a second step, the user has a project (in computer science or math)

and s/he learns the rest of Coq by necessity.

Documentation
@ Many tutorials on Coq's page

@ Several books, alraedy available [BCO04, Chl1l, P*], or in preparation
(including books on SSreflect).

@ Many posts on the cog-club mailing list and stack overflow.

@ Coq summer schools and workshops are organized.

Coqu::3s
EEEIEEA

ROME FH¥— 2016.12

| 1
m‘ @ ‘ (by Tsukuba Coq Users’ Group)

23 /24
-2

coq.inria.fr

Conclusion

As a conclusion ...

The process of using the proof assistant becomes pretty natural.
In fact, it's a bit like playing a video game. You interact with the
computer. You tell the computer, try this, and it tries it, and it
gives you back the result of its actions. Sometimes it's
unexpected what comes out of it. It's fun.”

Vladimir Voevodsky, interview for Scientific American.

Conclusion

[BCO4] Yves Bertot and Pierre Castéran.
Interactive Theorem Proving and Program Development. Coq'Art:
The Calculus of Inductive Constructions.
Springer, 2004.
http://www.labri.fr/perso/casteran/CogArt/index.html.

[ChI11] Adam Chlipala.
Certified Programming with Dependent Types.
MIT Press, 2011.
http://adam.chlipala.net/cpdt/.

[Com] CompCert Development Team.
The CompCert compiler.
http://compcert.inria.fr.

[Coq] Coq Development Team.
The coq proof assistant.
coq.inria.fr.

25/26

http://www.labri.fr/perso/casteran/CoqArt/index.html
http://adam.chlipala.net/cpdt/
http://compcert.inria.fr/

Conclusion

[PT] Benjamin Pierce et al.
Software foundations.
https:/ /softwarefoundations.cis.upenn.edu/.

26 /26

